37 research outputs found

    Cardiac Autonomic Nervous System in Heart Failure: Imaging Technique and Clinical Implications

    Get PDF
    The autonomic nervous system interacts in the pathophysiology of heart failure. Dysfunction of the sympathetic nervous system has been identified as an important prognostic marker in patients with chronic heart failure. At present, cardiac sympathetic nerve imaging with 123-iodine metaiodobenzylguanidine [123-I MIBG] has been employed most frequently for the assessment of cardiac sympathetic innervation and activation pattern. The majority of studies have shown that cardiac sympathetic dysfunction as assessed with 123-I MIBG imaging is a powerful predictor for heart failure mortality and morbidity. Additionally, 123-I MIBG imaging can be used for prediction of potentially lethal ventricular tachyarrhythmias in heart failure patients. At present however, the lack of standardization of 123-I MIBG imaging procedures represents an evident issue. Standardized criteria on the use of 123-I MIBG imaging will further strengthen the clinical use of 123-I MIBG imaging in heart failure patients

    Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography

    Get PDF
    Coronary computed tomographic angiography (CCTA) is a non-invasive imaging modality for the visualization of the heart and coronary arteries. To fully exploit the potential of the CCTA datasets and apply it in clinical practice, an automated coronary artery extraction approach is needed. The purpose of this paper is to present and validate a fully automatic centerline extraction algorithm for coronary arteries in CCTA images. The algorithm is based on an improved version of Frangi’s vesselness filter which removes unwanted step-edge responses at the boundaries of the cardiac chambers. Building upon this new vesselness filter, the coronary artery extraction pipeline extracts the centerlines of main branches as well as side-branches automatically. This algorithm was first evaluated with a standardized evaluation framework named Rotterdam Coronary Artery Algorithm Evaluation Framework used in the MICCAI Coronary Artery Tracking challenge 2008 (CAT08). It includes 128 reference centerlines which were manually delineated. The average overlap and accuracy measures of our method were 93.7% and 0.30 mm, respectively, which ranked at the 1st and 3rd place compared to five other automatic methods presented in the CAT08. Secondly, in 50 clinical datasets, a total of 100 reference centerlines were generated from lumen contours in the transversal planes which were manually corrected by an expert from the cardiology department. In this evaluation, the average overlap and accuracy were 96.1% and 0.33 mm, respectively. The entire processing time for one dataset is less than 2 min on a standard desktop computer. In conclusion, our newly developed automatic approach can extract coronary arteries in CCTA images with excellent performances in extraction ability and accuracy

    Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT

    Get PDF
    The aim of the current study was to evaluate the relationship between the site of latest mechanical activation as assessed with gated myocardial perfusion SPECT (GMPS), left ventricular (LV) lead position and response to cardiac resynchronization therapy (CRT). The patient population consisted of consecutive patients with advanced heart failure in whom CRT was currently indicated. Before implantation, 2-D echocardiography and GMPS were performed. The echocardiography was performed to assess LV end-systolic volume (LVESV), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). The site of latest mechanical activation was assessed by phase analysis of GMPS studies and related to LV lead position on fluoroscopy. Echocardiography was repeated after 6 months of CRT. CRT response was defined as a decrease of a parts per thousand yen15% in LVESV. Enrolled in the study were 90 patients (72% men, 67 +/- 10 years) with advanced heart failure. In 52 patients (58%), the LV lead was positioned at the site of latest mechanical activation (concordant), and in 38 patients (42%) the LV lead was positioned outside the site of latest mechanical activation (discordant). CRT response was significantly more often documented in patients with a concordant LV lead position than in patients with a discordant LV lead position (79% vs. 26%, p < 0.01). After 6 months, patients with a concordant LV lead position showed significant improvement in LVEF, LVESV and LVEDV (p < 0.05), whereas patients with a discordant LV lead position showed no significant improvement in these variables. Patients with a concordant LV lead position showed significant improvement in LV volumes and LV systolic function, whereas patients with a discordant LV lead position showed no significant improvements.Cardiovascular Aspects of Radiolog

    The Use of Nuclear Imaging for Cardiac Resynchronization Therapy

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Cardiac resynchronization therapy (CRT) has shown benefits in patients with end-stage heart failure, depressed left ventricular (LV) ejection fraction ( ≤ 35%), and prolonged QRS duration ( ≥ 120 ms). However, based on the conventional criteria, 20 % to 40 % of patients fail to respond to CRT. Studies have focused on important parameters for predicting CRT response, such as LV dyssynchrony, scar burden, LV lead position, and site of latest activation. Phase analysis allows nuclear cardiology modalities, such as gated blood-pool imaging and gated myocardial perfusion single photon emission computed tomography (GMPS), to assess LV dyssynchrony. Most importantly, GMPS with phase analysis has the potential of assessing LV dyssynchrony, scar burden, and site of late activation from a single acquisition, so that this technique may provide a one-stop shop for predicting CRT response. This article provides a summary on the role of nuclear cardiology in selecting patients for CRT, with emphasis on GMPS with phase analysis
    corecore